Three-dimensional steady disturbance modes in the Blasius boundary layer – a DNS study

نویسندگان

  • Markus Kloker
  • Christian Stemmer
چکیده

Direct numerical simulation is used to investigate the nature and behaviour of steady spanwise flow modulations excited internally in the Blasius boundary layer, primarily for a Reynolds number based on the displacement thickness ( Æ ) greater than 1,600. Both types of disturbances known – -/streak-/Klebanoff modes or longitudinal vortex modes – exhibit a periodic spanwise variation, but the -modes are characterized by a dominant streamwise disturbance velocity component and a negligible swirling motion, whereas for the vortex modes the latter is strong. We investigate how the respective modes can be identified and in which situation they are present, using direct excitation at the wall locally as well as non-locally, and nonlinear generation in the oblique and fundamental breakdown scenario in transition to turbulence. Understanding their occurrence contributes to understanding non-eigenmodal disturbance growth and secondary flow instability eventually causing final laminar breakdown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical studies of bypass transition in the Blasius boundary layer

Experimental findings show that transition from laminar to turbulent flow may occur also if the exponentially growing perturbations, eigensolutions to the linearised disturbance equations, are damped. An alternative non-modal growth mechanism has been recently identified, also based on the linear approximation. This consists of the transient growth of streamwise elongated disturbances, with reg...

متن کامل

On Interaction of T S Waves and 3 D Localized Disturbance in a Divergent Flow Under Zero Pressure Gradient

To simulate the effect of free st ream turbulence on turbulent spot formation, experiments were conducted on the interaction of localized three-dimensional disturbances with the harmonic waves in a laminar boundary layer on a flat plate. Experiments conducted in three-dimensional diverging flow (but zero pressure gradient) show, while individually the disturbances decay downstream, their intera...

متن کامل

On the application of e-methods to three-dimensional boundary-layer flows

Extension of the en-method from two-dimensional to three-dimensional boundary-layer flows has not been straightforward. Confusion has centred on whether to use temporal or spatial stability theories, conversion between the two approaches, and the choice of integration path. The aim of this study is to clarify the confusion about the direction and magnitude of maximum growth in convectively unst...

متن کامل

Three-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions

The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...

متن کامل

Algebraic growth in a Blasius boundary layer: Nonlinear optimal disturbances

The three-dimensional, algebraically growing instability of a Blasius boundary layer is studied in the nonlinear regime, employing a nonparallel model based on boundary layer scalings. Adjoint-based optimization is used to determine the “optimal” steady leading-edge excitation that provides the maximum energy growth for a given initial energy. Like in the linear case, the largest transient grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004